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Abstract. Wireless sensor networks (WSN) will have a major impact
on our everyday’s life. A requirement for large-scaled deployment are ex-
tremely low-cost sensors though running with minimal resources regard-
ing computational power, energy consumption, and memory size. Crypto-
graphic schemes are highly at demand for providing security mechanisms
in such WSNs. Asymmetric cryptography allows for flexible key manage-
ment schemes at the cost of high resource demands whereas symmetric
cryptography provides resource efficient solutions.
In this work we sketch an approach for (1) providing asymmetric cryp-
tography during the one-time bootstrapping phase and (2) swap it by
other security protocols for operation of the WSN in order to minimize
memory size demands. Our mechanism is based on dynamic code update,
e.g. provided by the FlexCup plug-in for TinyOS. Our approach yields
the best of two worlds in order to maximize flexibility and life-span and
minimize resource demands.

Keywords: wireless sensor network, WSN, hybrid security approaches, dy-
namic code update

1 Introduction

During the last years wireless sensor networks (WSN) became more and more
interesting for the research but also for the industrial community. Nowadays
it seems that there exists a huge variety of applications suited to WSNs. Such
applications will fundamentally change our daily lives due to its ubiquitous facet
and will result in financial savings as well as more comfort and safety.

The use of digital signatures and public-key (PK) encryption provided by
asymmetric cryptography is widely discussed in the community. Often, it is
stated that asymmetric cryptography is too resource demanding for the highly
constrained sensor devices. However, recently several working groups came up
with running implementations of asymmetric cryptography on sensor devices.
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One example is the elliptic curve cryptography (ECC) library for Mica Motes [GPW+04].
However, one needs to classify the Mica Motes belonging to one of the most pow-
erful sensor device classes. For an envisioned deployment of thousands of devices
far more constrained and in particular less costly devices need to be introduced.
In particular, we foresee that application specific controllers at minimal cost
will be used (e.g., low-cost 4 or 8-bit controllers with very little memory). Here,
the often quoted Moore’s law cannot be applied in its traditional way (i.e. dou-
bling of performance) but in an adapted way such that the prize reduces by
half each 18 months. Hence, it can be foreseen that the cumulated number of
all deployed sensors will regularly double but the device’s resources will stay
extremely low. From such observations we conclude that solutions for efficiently
deploying asymmetric cryptography will still be highly in demand at any time.

The usage of asymmetric cryptography has been pointed out to be very
costly in terms of storage, computation, and energy on restricted devices, e.g. 8-
bit ATMEL ATmega128L micro-processor (Mica Motes). However, asymmetric
cryptography in particular would be very valuable for initial bootstrapping of
the security association within WSNs. In such kind of networks it is usually
only possible to establish pair-wise security associations after the roll-out of the
sensor nodes. In particular a pre-established secret before the roll-out can not
always be assured.

From conventional network security we know that security protocols are usu-
ally based on a hybrid approach, namely a combination of asymmetric and sym-
metric cryptography like e.g. done in SSL, PGP, and IPSEC. Asymmetric keys
are used for the key establishment and subsequent communication is secured
by purely using symmetric schemes. Ideally, such an approach should also be
applicable to WSNs. What brings this vision close to reality is the following
observation: In the arena of WSNs and in particular for large scaled sensor net-
works there is the ultimative need for means of code update during runtime
of the system. Otherwise such complex and highly distributed systems would
not be manageable and maintainable in realistic roll-out scenarios. Although
quasi-standardized OS-solutions do not explicitly support dynamic code update
(e.g. TinyOS [HSW+00]), operating systems which support such mechanisms are
already available (Contiki [DGV04], MANTIS OS [ABC+03]).

The main contribution of this work is to use dynamic code update for the
establishment of hybrid security concepts in WSNs: during the initial roll-out
phase of a WSN, we propose using traditional asymmetric cryptographic schemes
for establishing various types of security associations. Subsequently, by dynamic
code update we propose to replace the binary code for the asymmetric operations
by application related binary code. We argue that binary code for asymmetric
schemes essentialy is only needed during the roll-out phase of the sensor network
also taking into account the moderate lifetime of a WSN.

With the above sketched approach we see substantial benefit due to the
following reasons:
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– Cost-efficient fabrication at the manufacturer: There is no need for a spe-
cific pre-configuration of the nodes at the manufacturer with respect to the
envisioned security.

– Flexibility with respect to various key-management models: Depending on
the concrete WSN application and its security requirements the approach
is flexible enough to support various key-management models like pairwise-,
groupwise or network-wide key-management during the bootstrapping phase
of the system.

Finally it is obvious that dynamic code update with the objective to estab-
lish hybrid security concepts in WSNs is only feasible if binary code update
is verifiable by the sensor nodes during runtime. In principle two solutions are
possible:

1. Verification based on asymmetric schemes and in case of a successful verifi-
cation subsequently replacement of asymmetric scheme component.

2. Verification based on some other pre-established secret, e.g. during the con-
figuration phase at the manufacturer.

Note that although dynamic code update in principal is usable many times,
we are solely aiming at a single code update directly after the roll-out phase of the
WSN. More concretely, we distinguish between the binary code required during
the roll-out and the initial bootstrapping of the system and binary code which is
required for the subsequent operation in the application phase. In the remainder
of this article we will concretize our approach for the operating system TinyOS,
the de facto standard operating system for WSNs. Unfortunately TinyOS only
allows to exchange the whole program code and not, as required, only parts
of the application code. Therefore, several approaches have been published to
expunge this shortcoming. Out of these proposals we chose FlexCup. However,
FlexCup enables us to demonstrate and validate our approach on the de facto
standard operating system TinyOS.

2 Related Work

The proposed idea touches related work in three different domains: constrained
devices, state-of-the-art implementations of PK cryptography, and operating sys-
tems for constrained devices.

2.1 Devices Background

WSNs are composed of sensor nodes, which are typically highly constrained
devices with low computational power and a small memory size. Applications
shall be designed to work for months or even years without changing the bat-
tery of the sensor nodes. Therefore, power-efficiency is a crucial requirement for
applications implemented on sensor nodes.

Mica Motes, developed by UC Berkeley and distributed by Crossbow Tech-
nology [xbo], are emerging as the de facto standard devices for WSN researchers.
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The mote family MICA2, MICA2DOT and MICAz consist of a low-power 8-bit
ATMEL ATmega128L RISC microprocessor running at 4 MHz, 128 KB of in-
ternal FLASH program memory, 4 KB of internal SRAM data memory, 512 KB
of external FLASH data memory, several sensors, and a radio interface.

The TmoteSky (or Telos B) motes, developed by Moteiv and distributed by
Crossbow, serve as an example of more constrained devices in terms of program
memory. They consist of an ultra low-power 16-bit RISC Texas Instruments
MSP40 microcontroller running at 8 MHz, 48 KB of internal FLASH program
memory, 10 KB of internal SRAM data memory, 1024 KB of external FLASH
data memory, several sensors, and a radio interface. Note that TmoteSky motes
feature roughly only a third of program memory compared to Mica motes (48
KB vs. 128 KB) while at the same time the processor word size is doubled (16
bit vs. 8 bit).

For both device calsses power is supplied by two AA batteries, which provide
approximately 1000 milliamp-hours. Sending or receiving of a byte needs far more
energy than computing one byte for example with AES [WGE+05]. Also access to
the FLASH memory causes relatively high energy consumption compared to pure
computation. However, if only energy consumption of the processor is considered,
without concerning energy consumption of memory or radio interface, than the
energy consumption of an application is directly proportional to the execution
time.

Since the forementioned motes are quite expensive we do not believe that real-
life WSNs will consist of such modular mote families. Furthermore, since memory
size is one of the biggest cost drivers for all embedded systems we believe that
real-life sensors will be highly integrated ASICs with very constrained program
memory (FLASH).

2.2 Public-Key Cryptography

Public-key cryptography is desired for several reasons in WSNs. Examples are
authentication or key establishment. In [GPW+04] Gura et al. compare the
execution time and memory usage of standardized ECC [Cer00] and RSA with
different keylengths on an ATmega128 8-bit RISC processor. Their results are
summarized in the upper part of Table 1, whereas time figures for the lower part
are calculated from tables in [Wur03]. As one can see, processing a standardized
ECC with 160 bits takes 1.62 seconds compared to 21.98 seconds for a private-key
RSA-1024 operation and 0.96 milliseconds for an AES-128 encryption.

These figures underline that even a fast implementation of a PK cipher is
still up to three orders of magnitude slower on 8-bit RISC processors than a
symmetric cipher. In addition PK ciphers generally need more data memory
and have a larger code size, which is caused by their larger operands length.
Since a longer execution time increases power consumption, it is desirable to use
symmetric ciphers instead of PK ciphers whenever possible. We conclude that
PK cryptography should be used very rarely in WSNs.
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Algorithm µ-processor time [ms] RAM [B] code [B]

ECC serp160r1 ATmega128 1,620 282 3682

ECC serp192r1 ATmega128 2,480 336 3979

ECC serp224r1 ATmega128 4,380 422 4812

RSA-1024 public ATmega128 860 542 1073

RSA-1024 private ATmega128 21,980 930 6292

RSA-2048 public ATmega128 3,840 1332 2854

RSA-2048 private ATmega128 166,520 1853 7736

RC5-32/12/16 ATmega32 0.28 104 1170

AES-128 ATmega163 0.96 8 1326

IDEA ATmega32 0.7 104 824

Skipjack ATmega32 0.68 0 708

RC4 ATmega32 0.02 258 332
Table 1. Performance of symmetric and asymmetric ciphers on 8-bit ATMEL AVR
RISC µ-processors

2.3 Operating Systems for Constrained Devices

Several operating systems for constrained devices have recently been developed,
such as TinyOS [HSW+00], MANTIS OS [ABC+03], Contiki [DGV04], and
SOS [HKS+05] amongst many others. TinyOS is the de facto standard oper-
ating system for WSNs. It is written in the event-driven programming language
nesC [GLvB+03], which is specially suited for the needs of network embedded
systems.

Although TinyOS allows to exchange the whole program image, unfortu-
nately unlike MANTIS OS, Contiki, or SOS, it does not allow for separately ex-
changing system components and application components. However, to expunge
this shortcoming several approaches have been published, such as Mate [LC02],
Impala [LM03], Deluge [HC04], FlexCup [MGL+06], and MiLAN [HMCP04].

In the remainder of this article, we will focus on FlexCup. FlexCup is an
application that consists of a compiler-extension (FlexCup-Analyzer), a middle-
ware component (code distribution algorithm), a stand-alone operating system
(FlexCup-Linker), and a kernel component (FlexCup-Bootloader). It is part of
the TinyCubus project [MLM+] and is based on TinyOS. To guarantee full
portability to other frameworks FlexCup is written in ANSI C. FlexCup can
update parts of TinyOS as well as exchange application components power-
efficiently [MGL+06].

In the next section we provide a detailed description of all steps performed
during a code update with FlexCup. Recall that we chose FlexCup even though
it has a rather high memory requirement, because it enables us to demonstrate
our approach on the de-facto standard operating system TinyOS.
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3 Our Approach

Deployment scenarios of WSNs can be split into at least two phases: bootstrap-
ping phase and normal operating phase. During bootstrapping phase, nodes per-
form operations which are only necessary for initialization of the system, while in
the latter case nodes perform their real duties, i.e. sensing and sending data (sen-
sors nodes) or receiving, processing and sending data (aggregator nodes) to the
base station. E.g. the UbiSec&Sens project1 provides many security components
which are purely needed during the bootstrapping phase: topology aware group
keying (TAGK), a key pre-distribution scheme which supoports the end-tp-end
encryption of convergecast traffic, and concepts like concealed data aggregation
(CDA [DW06]). Such concepts require different forms of homomorphic encryp-
tion transformations which are fully useless during the bootstrapping phase. On
the other hand, a set of security components is purely required during the nor-
mal operating phase. For example, when techniques are required to persistently
store encrypted data within the network (TinyPEDS [JG06]) or when end-to-
end encryption of convergecast traffic with in-network processing is required
(CDA [DW06]). Taking into account that TmoteSky motes have only 48 KB of
program memory (and that real-life deployed sensors may have even less), it is
obvious that not all applications will fit at the same time on a mote. Therefore
we propose to use dynamic code update to replace components which are only
used during the initial bootstrapping phase by components which are purely
required in normal operating mode.

For example, PK cryptography is very inefficient on constrained devices, es-
pecially in terms of power consumption. On the other hand, by using the PK
component, nodes are enabled to establish various types of security relations
during bootstrapping. This is essentially true for different forms of pair-wise,
group-wise, or network-wide key-establishment. Note that we do not focus on
a specific key-distribution scheme. However, our approach supports any key-
distribution scheme and provides all means for designing such flexible and effi-
ciently at the same time. Therefore, we propose to use PK cryptography only
during bootstrapping to establish security relations. Subsequently, the PK and
TAGK components are not required anymore and are substituted by components
which support the system in its normal operating phase. Note that this scenario
enables to e.g. use highly optimized implementations of a PK cryptographic
scheme without considering too much the code-size, since the PK component is
used just a few times during bootstrapping.

However, to prevent an adversary from placing false or malicious code on the
node, it is crucial that new components are verified by the node before instal-
lation. Recall that in our scenario, nodes use PK cryptography purely during
bootstrapping. Therefore, in our scenario nodes verify the first code update by
an asymmetric scheme to check components.

1 UbiSec&Sens is a STREP of the EU Framework Programme 6 for Research and
Development with the aim to provide a toolbox of cryptographic applications. For
further informations see http://www.ist-ubisecsens.org
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Requirements: We assume that it is possible to fabricate sensor nodes with
a customer specific initial setup, e.g. in our scenario the nodes are delivered
with a minimal operating system, FlexCup, a PK cryptographic scheme (PK
component), and a built-in public-key.

Network Model: In our considerations we clearly focus on highly constrained
devices in terms of energy, memory space, and computational power; Mica-Motes
serve as an example for upper-bound devices. We further assume that all nodes,
since they are deployed with the initial setup described above, are able to per-
form a code-update. Contrary to sensor nodes, the base station is not expected
to be constrained in terms of energy, memory, and computational power. All
devices communicate via a wireless broadcast medium, e.g. IEEE 802.15.4 LR-
WPAN. We assume the communication to be bi-directional and in the general
case multihop. The code-update is multicast traffic from the sink-node to the
sensor nodes, whereas the principle traffic-pattern for monitored data is con-
vergecast from many nodes to the sink node.

Adversary Model: The well-known Dolev-Yao threat model [DY83] is con-
sidered to be the de-facto standard threat model for formal analysis of crypto-
protocols. However, in the context of WSNs it is not suitable, because it assumes
secure devices as endpoints of an insecure channel. In WSNs secure devices
mean tamper-resistant devices, because otherwise adversaries might pick up de-
vices and tamper it. However, tamper-resistance is an expensive task, if even
achievable, and furthermore, we are talking about WSNs consisting of hundreds
or thousands of nodes. Therefore we generally assume devices in our model to
be unprotected or at most partly-protected. Partly-protected means that de-
vices can be tampered but for relative high costs and only after a certain delay
in time, providing therefore a higher security level than unprotected devices.
Furthermore, we assume that there is a rather short time window between de-
ployment and initial code update, where no adversary is able to tamper or steal
a node. However, with respect to our implicitly considered adversary model,
eavesdropping of the whole communication is possible at any time.

Let us have a closer look on what exactly has to be done for a successful substi-
tution of the PK component for components supporting the system’s operating
phase (see Figure 1). At this point we want to emphasize that since symmet-
ric schemes like AES or RC5 are already available when using IEEE 802.15.4
or TinySEC, the security model of TinyOS, respectively, we do not deal with
uploading such code anymore.

1. Meta-Data Generation - First, FlexCup-Analyzer analyzes the executable
program file, the component object files, and the map file of the linker. With
the gained knowledge, FlexCup-Analyzer produces the meta-data in binary
format. The meta-data consist of informations about the whole program,
component specific informations, symbol informations, and the relocation



8 Axel Poschmann♦, Dirk WesthoffF, and Andre Weimerskirch∇

Fig. 1. FlexCup Steps for Dynamic Code Update

table. When substituting the PK component by an application specific com-
ponent, FlexCup-Analyzer produces the meta-data for the application spe-
cific component. FlexCup-Analyzer performs all steps at the base station.

2. Code Distribution - During the second step, the application specific com-
ponents together with their meta-data are transmitted from the base station
to the node. Here FlexCup uses a specific code distribution algorithm, which
is related to Deluge [HC04].

3. Data Storage on the Node - Once data of the application specific com-
ponent are received at the radio interface of the node, they are stored in the
external FLASH memory. In the FLASH memory also a complete copy of
the program memory is stored. This image can be copied into the FLASH
memory right before code update starts.

4. Verification of code and substitution of PK component - Recall that
in our scenario every node is deployed with a build-in public-key. Moreover,
every component’s code is digitally signed by the code publisher’s private-
key, which is usually the private-key of the owner of the WSN.
4.1 Verification of the component’s digital signature - Nodes verify

the the digital signature of the received binary code of the component.
4.2. Substitution of the PK component - Now FlexCup-Linker can start

to work. First, it substitutes the PK component code by the application
specific component code. If the code size of the application specific com-
ponent is larger than the code size of the PK component, FlexCup-Linker
moves following program code backwards, if code size is smaller it moves
it forth, respectively.

5. Symbol Table Update - Next, FlexCup-Linker updates the symbol table.
Therefore it uses the SRAM to merge information of the new component’s
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meta-data with the old symbol table. If entries have changed, the MSB of
the symbolidentifier is set, thus indicating the linker to patch the references.

6. Relocation Table Substitution - FlexCup-Linker now substitutes the old
relocation table with the new one, which is part of the meta-data of the
application specific component. This is done by simply copying the new
relocation table to the position of the old one. In the layout of the program
memory, there is a buffer between a relocation table and the next code
segment. Therefore, only if the new relocation table exceeds the old one plus
the buffer size, there is additional overhead.

7. Update References - FlexCup-Linker is able to patch all references, by
examining the updated symbol table. When finished, FlexCup-Linker resets
the ”update”-flags in the symbol-table.

8. Copy to Program Memory and Reset - Finally, FlexCup-Bootloader copies
the new program code from FLASH memory to program memory. Afterwards
FlexCup-Bootloader jumps to memory address 0x000000, thus realizing a re-
set of the node.

After the code update the node’s program code no longer contains compo-
nents which are only required during bootstrapping, for example the PK com-
ponent. It rather consists of TinyOS and components which supports the WSN
in its normal operating phase. Surely this may be again a security-related com-
ponent, e.g. CDA for ensuring end-to-end encryption for convergecast traffic
or TinyPEDS for secured storing environmental data in a distributed manner.
If no further updating of the component’s code is desired, even the FlexCup
component can be replaced.

4 Open Issues and Conclusion

The scenario described in Section 3 enables various further possibilities, such
as autonomous code download with respect to the relative position of a node
within a WSN. Once all sensor nodes are deployed with the basic setup, the
base station can broadcast different application components for various purposes
in the network. Sensor nodes then can autonomously decide which application
component they need to download. Sensor nodes need to know their relative
position in the WSN topology or at least their distance in terms of hops to the
sink node, though.

Beside the upcoming possibilities of this scenario, there are several issues to
be solved. Most important of all is the verification of the components for code
update. There are two general approaches to cope with it:

1. Verification based on asymmetric schemes and in case of a successful verifi-
cation subsequently replacement of binary code for asymmetric scheme.

2. Verification based on some other pre-established secret, e.g. a shared key
which was established during bootstrapping.

Both of these approaches need further investigations and an accurately de-
fined adversary model.
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In this article we presented a new approach for efficient application of public-
key cryptographic schemes in wireless sensor networks. We pointed out that en-
ergy inefficiency of asymmetric schemes is not an obstacle for usage, when only
used a few times during bootstrapping. By substituting the public-key crypto-
graphic scheme with an application specific component for usage in the operation
phase, even devices with very limited memory resources are able to benefit from
public-key cryptographic schemes. Moreover, by substituting applications spe-
cific to the nodes current needs, in general devices with less program memory are
required. Hence, even low-cost devices with very limited memory resources can
meet requirements to provide a wide range of applications. This will significantly
lower cost for WSNs and may boost deployment of new WSNs.
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